

380N Series Recommended Cutting Data - Profile Milling with 4xD Neck Length- Inch

							End Mill Diameter (Inch)					
Workpiece Material Group	I S O	Coolant			RWOC (Ae)		3/8	1/2	5/8	3/4		
		sion			5% 2.3	7% 1.96	←		ctor based on ae. the standard fz per chang ng when roughing or s			
		Emulsion	Ą	MQL	Vc - SFM			fz - in/tooth				
Low Carbon Steels		0	•	0	1330	1035	.0023	.0030	.0038	.0045		
Medium Carbon Steels	P	0	•	0	1015	810	.0023	.0030	.0038	.0045		
Alloy Steels	7	0	•	0	930	755	.0023	.0030	.0038	.0045		
Die / Tool Steels		0	•	0	810	655	.0023	.0030	.0038	.0045		
Free Machining Stainless Steels		•	•	0	610	490	.0023	.0030	.0038	.0045		
Austenitic Stainless Steels		•	х	0	475	385	.0019	.0025	.0031	.0038		
Difficult Stainless Steels		•	х	0	370	295	.0015	.0020	.0025	.0030		
PH Stainless Steels	М	•	•	0	475	385	.0015	.0020	.0025	.0030		
Cobalt Chrome Alloys		•	х	0	370	295	.0015	.0020	.0025	.0030		
Duplex (22%)		•	х	0	295	265	.0015	.0020	.0025	.0030		
Super Duplex (25%)		•	х	0	220	175	.0015	.0020	.0025	.0030		
High Temp Alloys	S	•	х	х	160	-	.0009	.0013	.0016	.0019		
Titanium Alloys	3	•	0	0	340	295	.0015	.0020	.0025	.0030		
Gray Cast Irons		•	0	0	1465	1165	.0023	.0030	.0038	.0045		
Ductile Cast Irons	K	•	0	0	880	795	.0023	.0030	.0038	.0045		
Malleable Cast Irons		•	0	0	520	440	.0023	.0030	.0038	.0045		
Hardened Steels 45-50 HRC		0	•	0	550	-	.0019	.0025	.0031	.0038		
Hardened Steels 50-55 HRC	н	0	•	0	460	-	.0013	.0018	.0022	.0026		
Hardened Steels 55-60 HRC		0	•	0	295	-	.0008	.0010	.0013	.0015		

Preferred

Notes:

- For machining materials above 50 HRC, reduce stepover (ae) to 2-3% of DC for optimal performance

Spindle Maximum - Should the calculated spindle speed be more than your actual spindle maximum, use this formula: (Calculated Feed x Spindle Maximum)/Calculated Speed.

Technical data provided should be considered advisory only as variations may be necessary depending on the particular application.

Phone: 800-553-8024 or 563-391-6220

Email: sales@maford.com

o Possible

x Not Possible

380N Series Recommended Cutting Data - Profile Milling with 5xD Neck Length- Inch

					End Mill Diameter (Inch)						
Workpiece Material Group	I S O	Coolant			RWOC (Ae)		3/8	1/2	5/8	3/4	
		nois			3% 2.93	5%	←	Multiply fz by this factor based on ae. When finishing, use the standard fz per chart belc Only add chip thinning when roughing or semi-fir			
		Emulsion Air	MQL	Vc - SFM			fz - in/tooth				
Low Carbon Steels		0	•	0	1035	805	.0018	.0024	.0030	.0036	
Medium Carbon Steels	P	0	•	0	790	630	.0018	.0024	.0030	.0036	
Alloy Steels	7	0	•	0	725	590	.0018	.0024	.0030	.0036	
Die / Tool Steels		0	•	0	630	505	.0018	.0024	.0030	.0036	
Free Machining Stainless Steels		•	•	0	470	380	.0018	.0024	.0030	.0036	
Austenitic Stainless Steels		•	х	0	370	300	.0015	.0020	.0025	.0030	
Difficult Stainless Steels		•	х	0	285	230	.0012	.0016	.0020	.0024	
PH Stainless Steels	М	•	•	0	370	300	.0012	.0016	.0020	.0024	
Cobalt Chrome Alloys		•	х	0	285	225	.0012	.0016	.0020	.0024	
Duplex (22%)		•	х	0	230	205	.0012	.0016	.0020	.0024	
Super Duplex (25%)		•	х	0	170	135	.0012	.0016	.0020	.0024	
High Temp Alloys	S	•	х	х	125	-	.0008	.0010	.0013	.0015	
Titanium Alloys	3	•	0	0	265	230	.0012	.0016	.0020	.0024	
Gray Cast Irons		•	0	0	1140	905	.0018	.0024	.0030	.0036	
Ductile Cast Irons	К	•	0	0	685	620	.0018	.0024	.0030	.0036	
Malleable Cast Irons		•	0	0	405	345	.0018	.0024	.0030	.0036	
Hardened Steels 45-50 HRC		0	•	0	425	-	.0015	.0020	.0025	.0030	
Hardened Steels 50-55 HRC	Н	0	•	0	355	-	.0011	.0014	.0018	.0021	
Hardened Steels 55-60 HRC		0	•	0	230	-	.0006	.0008	.0010	.0012	

Preferred

Notes:

- For machining materials above 50 HRC, reduce stepover (ae) to 2-3% of DC for optimal performance

Spindle Maximum - Should the calculated spindle speed be more than your actual spindle maximum, use this formula: (Calculated Feed x Spindle Maximum)/Calculated Speed.

Technical data provided should be considered advisory only as variations may be necessary depending on the particular application.

o Possible

x Not Possible

380 Series Recommended Cutting Data - Chip Thickness Compensation Factors - Inch

RWOC (ae)	Chip Thicknesss Compensation Factor
2%	3.57
3%	2.93
5%	2.30
7%	1.96
8%	1.84
10%	1.67

During profile milling with a radial width of less than 50% of the cutter diameter, the actual chip thickness at the cutting edge is less than the programmed chipload. The accompanying table shows the increase in chipload by given radial width percentage to adjust for chip thinning. Multiply your recommended chip thickness by the appropriate feed factor to establish the correct feed rate.

Safety Note

Always wear the appropriate personal protective equipment such as safety glasses and protective clothing when using solid carbide or HSS cutting tools. Machines should be fully guarded.

🔼 WARNING: This product can expose you to chemicals including cobalt, which is known to the State of California to cause cancer. For more information go to www.P65Warnings.ca.gov.

WB3802024

www.maford.com